
JAIN SIP Tutorial

Phelim O’Doherty
Sun Microsystems

Mudumbai Ranganathan
NIST

Serving the Developer CommunityServing the Developer Community

© 2003 Sun Microsystems, Inc. All Rights Reserved.2

JAIN SIP is the standardized Java
interface to the Session Initiation Protocol
for desktop and server applications.

JAIN SIP enables transaction stateless,
transaction stateful and dialog stateful
control over the protocol.

© 2003 Sun Microsystems, Inc. All Rights Reserved.3

Presentation Outline

• What is SIP?
• Why create JAIN SIP?
• Introduction to JAIN SIP
• Developer Code Snippets
• Implementation Used-Cases

© 2003 Sun Microsystems, Inc. All Rights Reserved.4

• Session Initiation Protocol (SIP) is a signaling protocol for
creating, modifying and destroying dialogs between multiple
endpoints:

– Request/response protocol (like HTTP, but peer-peer)
– Simple and extensible
– Designed for mobility (proxy/redirect servers)
– Bi-directional authentication
– Capability negotiation

• SIP is used for controlling the signaling that enables
manipulates of sessions such as:

– Instant Messaging sessions
– Phone calls over the Internet
– Gaming servers
– Resource Location

Session Initiation Protocol

© 2003 Sun Microsystems, Inc. All Rights Reserved.5

• SIP supports five facets of establishing and
terminating multimedia communications these include:
– User location: determination of the end system to be used

for communication.
– User capabilities: determination of the media and media

parameters to be used.
– User availability: determination of the willingness of the

called party to engage in communications.
– Call setup: "ringing", establishment of call parameters at

both called and calling party.
– Call handling: including transfer and termination of calls.

SIP Functionality

© 2003 Sun Microsystems, Inc. All Rights Reserved.6

Presentation Outline

• What is SIP?
• Why create JAIN SIP?
• Introduction to JAIN SIP
• Developer Code Snippets
• Implementation Used-Cases

© 2003 Sun Microsystems, Inc. All Rights Reserved.7

• SIP is an IETF specification that has been adopted by the communications
industry in the form of 3GPP, 3GPP2, OMA and ITU.

• The IETF specification defines the SIP protocol in text format

• The SIP Community holds various interoperability events to ensure the
credibility of the protocol.

• As a developer you are free to implement the protocol in any language,
hence define your own interface for accessing the defined behavior of the
protocol as outlined by the IETF standard.

• While IETF specification ensures interoperability between stacks, it doesn’t
address interoperability of applications across stacks.

• JAIN SIP satisfies this need in the Java programming language. It ensures
true interoperability in that by utilizing the JAIN SIP specification you have
interoperability between stacks and the interoperability of applications
across stacks, often referred to as application portability.

– Both stack interoperability and application portability are required in this new age of
communication standards.

Why Create JAIN SIP?

© 2003 Sun Microsystems, Inc. All Rights Reserved.8

Presentation Outline

• What is SIP?
• Why create JAIN SIP?
• Introduction to JAIN SIP
• Developer Code Snippets
• Implementation Used-Cases

© 2003 Sun Microsystems, Inc. All Rights Reserved.9

• The Java-standard interface to a SIP signaling stack.
– Standardizes the interface to the stack.
– Standardizes message interface.
– Standardizes events and event semantics.
– Application portability - verified via the TCK.

• Designed for developers who require powerful access to
the SIP protocol.

• JAIN SIP can be utilized in a user agent, proxy, registrar
or imbedded into a service container.

JAIN SIP

© 2003 Sun Microsystems, Inc. All Rights Reserved.10

• JAIN SIP supports the SIP protocol functionality described in RFC
3261.

• JAIN SIP the following SIP extensions;
– RFC 2976 allows for the carrying of session related control

information that is generated during a session.
– RFC 3262 provide information on progress of the request

processing.
– RFC 3265 the ability to request asynchronous notification of events.
– RFC 3311 allows the caller or callee to provide updated session

information before a final response.
– RFC 3326 the ability to know why a SIP request was issued.
– RFC 3428 allows the transfer of Instant Messages.
– RFC 3515 requests that the recipient refer to a resource provided in

the request.

JAIN SIP Functionality

© 2003 Sun Microsystems, Inc. All Rights Reserved.11

Proprietary
SIP Stack

Proprietary
SIP Stack

SIP
Factory

SIP
Factory

getInstance()

Event
Registration

createStack()

SIP Stack

createProvider()

SIP
Provider

Setup
Function
Setup

Function

createListener()
SIP

Listener
SIP

Listener

Proprietary
SIP Stack

Proprietary
SIP Stack

Network

JAIN SIP Object Architecture

© 2003 Sun Microsystems, Inc. All Rights Reserved.12

SipStack Interface
• Manages Listening Points and Providers.
• SipStack associated with an IP address.

─ Can have multiple Listening points.
• Application can have multiple SipStacks.
• Cannot be deleted once created.
• Instantiated by the SipFactory and initialized with a

property set.
• ‘javax.sip.*’ properties are reserved and names

defined for stack configuration properties.
• Defines retransmission settings.
• Defines router information.

© 2003 Sun Microsystems, Inc. All Rights Reserved.13

• JAIN SIP provides a convenience function that ensures all
retransmissions are handled by the JAIN SIP implementation.
– Reduces complexity for applications acting as user agents.
– Reduces complexity for integrating JAIN SIP as a base implementation

for a SIP Servlet container or a JAIN SLEE implementation.

• Configured via Java properties on the SipStack Interface.
– Default is off.

• The default handling of message retransmissions in JAIN SIP is
dependent on the application.
– Stateful proxy applications need not be concerned with retransmissions

as these are handled by JAIN SIP.
– Typically User Agent applications must handle retransmissions of ACK’s

and 2xx Responses.

Retransmissions

© 2003 Sun Microsystems, Inc. All Rights Reserved.14

• IP_ADDRESS
– Sets the IP Address of the SipStack. This property is mandatory.

• STACK_NAME
– Sets a user friendly name to identify the underlying stack implementation. This

property is mandatory.

• OUTBOUND_PROXY
– Sets the outbound proxy of the SIP Stack.

• ROUTER_PATH
– Sets the fully qualified classpath to the application supplied Router object that

determines how to route messages before a dialog is established.

• EXTENSION_METHODS
– This configuration value informs the underlying implementation of supported

extension methods that create new dialog's.

• RETRANSMISSION_FILTER
– A helper function for User Agents that enables the stack to handle retransmission

of ACK Requests, 1XX and 2XX Responses to INVITE transactions for the
application.

Stack Properties

© 2003 Sun Microsystems, Inc. All Rights Reserved.15

SipProvider Interface

• Register a SipListener to the SipProvider.
– Notifies registered Listener of Events

• De-register a SipListener from the SipProvider.
– Once de-registered, no longer receive Events from SipProvider.

• Client and Server Transaction creation methods.
– For sending Request and Response messages statefully.

• CallIdHeader creation method.
• Send Requests and Responses statelessly.
• Listening Point manipulation methods.

– Only one provider per listening point.

© 2003 Sun Microsystems, Inc. All Rights Reserved.16

• Provide methods to format SIP messages.

• The ability for an application to send and receive SIP
messages.

• Parse incoming messages and enable application access
to fields via a standardized Java interface.

• Invoke appropriate application handlers when protocol
significant
– Message arrivals and Transaction time-outs

• Provide Transaction support and manage Transaction
state and lifetime on behalf of a user application.

• Provide Dialog support and manage Dialog state and
lifetime on behalf on a user application.

Responsibilities of JAIN SIP

© 2003 Sun Microsystems, Inc. All Rights Reserved.17

SipListener Interface
• A single SipListener per SipStack which implies a single

Listener in the architecture
– All SipProviders associated to a Sipstack have the same

SipListener.
• Process Request's either statefully or statelessly

dependent on application logic.
• Process Response's to a recently sent Requests statefully.
• Process Transaction timeouts and retransmits Timer

events.
– Transaction processing notifications

© 2003 Sun Microsystems, Inc. All Rights Reserved.18

• Application registers an implementation of the SipListener
interface to interact with the SIP Stack.

• Application must register with the SipProvider for all
messaging capabilities with the stack.
– Application requests transactions for stateful messaging.
– Application sends stateless messages.
– Access stack objects.

• Application receives messages from the stack as Events via
the SipListener interface.

Responsibilities of the Application

© 2003 Sun Microsystems, Inc. All Rights Reserved.19

JAIN SIP Messaging Architecture

SipListener

SipProvider SipProvider

Stack Stack

SipListener

Network

SIP Events SIP EventsSIP Messages SIP Messages

Application

Listening Point Listening Point

© 2003 Sun Microsystems, Inc. All Rights Reserved.20

• The architecture is developed for the J2SE environment therefore is event
based utilizing the Listener/Provider event model.
– There is a direct reference between the event provider and event consumer
– Event consumer must register with the event provider

• Events encapsulate incoming Requests and Responses.

• Event Model is one way i.e. Application doesn’t send out events, it sends
out messages.

• The event model is asynchronous in nature using transactional identifiers to
correlate messages.

• The SipListener represents the event consumer and listens for incoming
Events that encapsulate messages that may be responses to initiated
dialogs or new incoming dialogs.

• The SipProvider is the event provider who recieves messages from the
network and passes them to the application as events.

Event Model

© 2003 Sun Microsystems, Inc. All Rights Reserved.21

• General package
– Defines the architectural interfaces, the transaction and

dialog interfaces and the event objects of the specification.

• Address package
– Address package contains a generic URI wrapper and

defines SIP URI and Tel URIs interfaces.

• Message package
– Defines the interfaces necessary for the Request and

Response messages.

• Header packages
– Header package defines interfaces for all the supported

headers and extension headers

Packages

© 2003 Sun Microsystems, Inc. All Rights Reserved.22

• SipFactory
– This interface defines methods to create new Stack objects and

other factory objects.

• AddressFactory
– This interface defines methods to create SipURI’s and

TelURL’s.

• HeaderFactory
– This interface defines methods to create new Headers objects.

• MessageFactory
– This interface defines methods to create new Request and

Response objects.

Factories
JAIN SIP defines four different factories each with respective
responsibilities, namely:

© 2003 Sun Microsystems, Inc. All Rights Reserved.23

Messages and Headers

© 2003 Sun Microsystems, Inc. All Rights Reserved.24

• There are two type of messages in SIP, which JAIN SIP defines as
Interfaces:
– Request messages are sent from the client to server.

• They contain a specific method type that identifies the type of Request.
• A Request-URI which indicates the user or service to which this request is

being addressed.
– Response messages are sent from server to client in response to a

Request.
• They contain a specific status code that identifies the type of Response.
• A Request-URI which indicates the user or service to which this request is

being addressed.
• A reason phrase that is intended for the human user.

• Messages may contain multiple Headers of the same type.
– The Headers of a given type within a message is significant, i.e. Headers

which are hop-by-hop must appear before any Headers which are end-to-end.

• A Message Body may contain a session description.
– JAIN SIP defines this format an Object which allows the body to be a String or

an Object type defined the Session Description Protocol (SDP) JSR
specification and also a byte array.

Messages

© 2003 Sun Microsystems, Inc. All Rights Reserved.25

• INVITE
– Invites a participant to a session

• BYE
– Ends a client’s participation in a session

• CANCEL
– terminates a transaction

• OPTIONS
– Queries a participant about their media capabilities

• ACK
– For reliability and call accepta nce (3-way handshake)

• REGISTER
– Informs a SIP server about the location of a user

Request Message Types
The following request messages are defined by the core SIP
protocol:

© 2003 Sun Microsystems, Inc. All Rights Reserved.26

• INFO

– Session related control information generated during a session.
• PRACK

– For reliability of provisional responses.
• UPDATE

– Update a session without impacting the state of a dialog.
• SUBSCRIBE

– Request notification from remote nodes when certain events occur.
• NOTIFY

– Notification from remote nodes when certain events occur.
• MESSAGE

– For sending instant messages.
• REFER

– Refer to a resource provided in the request.

Request Message Types
The following request messages are defined by various SIP
extensions:

© 2003 Sun Microsystems, Inc. All Rights Reserved.27

• SIP headers are similar to HTTP headers fields in both syntax and
semantics.

• JAIN SIP models each SIP header as a specific interface as opposed
to have a single generic interface to handle all header information.
– Each interface specifies the Headers acceptable parameters.
– More explicit protocol support – parsing support for each header.

• JAIN SIP supports all the headers defined in RFC 3261 and other
headers introduced by supporting the following additional RFC's:
– RFC3262 - RAckHeader and RSeqHeaders for the reliable delivery of

provisional responses.
– RFC3265 - AllowEventsHeader, EventHeader and

SubscriptionStateHeader to support the event notification framework.
– RFC3326 - ReasonHeader to support information on why the request was

issued.
– RFC3515 - ReferToHeader to support recipients to refer requests to

another resource

Headers

© 2003 Sun Microsystems, Inc. All Rights Reserved.28

JAIN SIP Extensible by Design
• SIP Extensions described in internet drafts and RFCs typically

define:
– New SIP Methods

• New dialog creating methods
– New SIP Headers.

• JAIN SIP defines an extensible framework to support new headers
standardized for SIP:
– New SIP methods can be set using the string method field of a

request.
– An application informs the stack of dialog creating methods, by

specifying the method name to the EXTENSION_METHOD
property of the SipStack configuration.

• JAIN SIP defines an extensible framework to support new headers
standardized for SIP:
– Defines a ExtensionHeader interface that contains the header

name and header value attribute pair.
– Can be created and accessed by name.

© 2003 Sun Microsystems, Inc. All Rights Reserved.29

Transactions and Dialogs

© 2003 Sun Microsystems, Inc. All Rights Reserved.30

Generic SIP Application Structure

Application
(SipListener)

Network (Raw Bytes)

Parser Encoder

ReqReq Res

SipStack Implementation

Tr
an

sa
ct

io
n

Tr
an

sa
ct

io
n

Tr
an

sa
ct

io
n

Req Res

Dialog Dialog
Messages

Events

Messages

Events

Messages

Events

SipProvider

© 2003 Sun Microsystems, Inc. All Rights Reserved.31

SIP Transactions

Server transaction

C
lient transaction

C
lient transaction

Server transaction

Stateful proxyUAC UAS

A SIP transaction consists of a single request
and any responses to that request.

© 2003 Sun Microsystems, Inc. All Rights Reserved.32

Transaction Support
• JAIN SIP standardizes the interface to the generic transactional model defined

by the SIP protocol
– JAIN SIP models both Client and Server Transactions as Interfaces.

• Transaction is created on incoming Request or may be created to send
outgoing request.

– When a Request is sent out statefully, application must request a ClientTransaction
– When a new Request arrives, application determines whether to handle request via

a ServerTransaction
– When a Request in an existing dialog arrives the stack automatically associates it to

a ServerTransaction

• When a response arrives, the Stack possibly associates a previously created
ClientTransaction with the response
– May be stray

• Messages are passed to the SipProvider in order to generate a new
transaction. This transaction can be used to send the message onto the
network

• Implementation manages the association between Transactions and Dialogs.

© 2003 Sun Microsystems, Inc. All Rights Reserved.33

Dialog Support
• A Dialog is a peer to peer association between communicating SIP

endpoints.
– The dialog represents a context in which to interpret SIP messages.

• Dialogs are never directly created by the Application.
– Dialogs are established by Dialog creating Transactions (INVITE,

SUBSCRIBE…) and are managed by the stack.

• Dialog deletion may be under application control.
– Though not generally recommended.

• Dialogs are used to maintain data needed for further message
transmissions within the dialog
– Route Sets, Sequence Numbers, URI’s of the parties in the dialog.

• Dialogs have a state machine
– Early, Confirmed, Completed and Terminated.

• Transactions may belong to a Dialog
– Dialog state changes as a result of changes in Transaction State.
– Access to dialog functionality from the transaction interface.

© 2003 Sun Microsystems, Inc. All Rights Reserved.34

3PCC Example

© 2003 Sun Microsystems, Inc. All Rights Reserved.35

Third Party Call Control – 3PCC

• 3PCC refers to the general ability to establish and
manipulate calls between other parties.

• Establishment of these calls is orchestrated by a third
party, referred to as the controller:
– A controller is a SIP User Agent that wishes to create a

session between two other user agents.

• 3PCC is often used for:
– operator services i.e. the operator creates a call that

connects two participants together.
– conferencing.

© 2003 Sun Microsystems, Inc. All Rights Reserved.36

3PCC Example using JAIN SIP

createClientTransaction(inviteA)
createReq(INVITE,-)

new()

INVITE(SipListener, A)

SipListener SipProviderSipFactory Dialog B SIP
Party B

SIP
Party A

null

3PCC App

RTP

sendRequest()

200OK(offerA)confirmedcreateReq(INVITE, offerA)

new()

INVITE(SipListener, B)
null

sendRequest()

200OK(offerB)confirmed
ACK(offerB)

ACK(offerA)

createClientTransaction(inviteB)

createClientTransaction(inviteC)
createReq(re-INVITE) – setBody(offerB)

sendRequest(clientTransC)

Client
Transaction Dialog A

new()

new()

200OK(offerB)
Re-INVITE(offerB)

ACK(offerB)

© 2003 Sun Microsystems, Inc. All Rights Reserved.37

Latest Specification Updates

• RFC2543 Supported.

• J2SE 1.3 and above.

• Transactions referenced by
long.

• Transaction state is not
visible to application.

• No explicit Dialog Support.

• Stack Configuration not
defined.

• RFC3261 Supported.

• J2SE 1.4 and above.

• Transaction interfaces
defined.

• Transaction/Dialog state can
be read by application.

• Dialog interface defined and
managed by stack.

• Stack Configured with
defined properties.

JAIN SIP v1.0 JAIN SIP v1.1

© 2003 Sun Microsystems, Inc. All Rights Reserved.38

Presentation Outline

• What is SIP?
• Why create JAIN SIP?
• Introduction to JAIN SIP
• Developer Code Snippets
• Implementation Used-Cases

© 2003 Sun Microsystems, Inc. All Rights Reserved.39

Application - Stack Creation

try {
Properties properties = new Properties();
properties.setProperty("javax.sip.IP_ADDRESS",

"129.6.55.181");
properties.setProperty("javax.sip.OUTBOUND_PROXY",

"129.6.55.182:5070/UDP");
……// Other initialization properties.
try {

sipStack = sipFactory.createSipStack(properties);
} catch(SipException e) {

System.exit(-1);
}

}

Initialize Stack using SipFactory:

© 2003 Sun Microsystems, Inc. All Rights Reserved.40

Application – Request Creation

try {
SipURI requestURI = addressFactory.createSipURI

(toUser, toSipAddress);
// … Create other headers
Request request = messageFactory.createRequest

(requestURI, Request.INVITE, callIdHeader,
cSeqHeader, fromHeader, toHeader,
viaHeaders, maxForwards);

}

Initialize Request using Factories:

© 2003 Sun Microsystems, Inc. All Rights Reserved.41

Application - Sending Requests

try {
// Create the client transaction
ClientTransaction inviteTid =

sipProvider.getNewClientTransaction(request);
// send the request
inviteTid.sendRequest();

}

Send outgoing messages:

© 2003 Sun Microsystems, Inc. All Rights Reserved.42

Application – Processing Requests

try {
public void processRequest(RequestEvent

requestEvent) {
Request request =

requestEvent.getRequest();
ServerTransaction st =

requestEvent.getServerTransaction();
// do request specific processing here

}
}

Handle incoming messages as Events:

© 2003 Sun Microsystems, Inc. All Rights Reserved.43

Presentation Outline

• What is SIP?
• Why create JAIN SIP?
• Introduction to JAIN SIP
• Developer Code Snippets
• Implementation Used-Cases

© 2003 Sun Microsystems, Inc. All Rights Reserved.44

JAIN SIP for Instant Messaging

• Suitable for building IM and
Presence Clients and Servers.

• API supports the required
methods and Headers.

• Creates and manages Dialogs
for SUBSCRIBE and MESSAGE
methods.

• NIST-SIP JAIN IM Client
SipListener is about 1100 LOC.

• Interoperates with Microsoft
Messenger IM

http://jain-sip-presence-proxy.dev.java.net

© 2003 Sun Microsystems, Inc. All Rights Reserved.45

JAIN SIP for Proxy Servers

• Facilities construction of Proxy
Servers
– Stateless, Transaction-

stateful, and Dialog-stateful
operation.

• Access to Dialog/Transaction
state and route tables.

• Extensibility and application
controlled Routing.

• Deep copy semantics for
cloning.

• Incorporates IM + Presence
Support

http://jain-sip-presence-proxy.dev.java.net

© 2003 Sun Microsystems, Inc. All Rights Reserved.46

JAIN SIP for Telephony

• Ideal for building telephony
applications.

• API provides a complete set
of functionality for managing
calls.

• Spares the application the
burden of managing dialogs
and transactions.

• SIP COMMUNICATOR - a complete example of an audio/video
telephony application (uses JAIN SIP RI and JMF)

http://sip-communicator.dev.java.net

• Interoperates with Microsoft Windows Messenger.

© 2003 Sun Microsystems, Inc. All Rights Reserved.47

JAIN SIP Reference Implementation

• In the public domain.
– Includes example IM

client and proxy.
– Includes trace

visualization tools.

• Footprint
– About 46000 LOC.
– Jar file about 355 Kb
– 3Mb of memory after

running a few requests.
http://www-x.antd.nist.gov/proj/iptel

© 2003 Sun Microsystems, Inc. All Rights Reserved.48

JAIN SIP Resources
• JAIN SIP Specification:

http://jcp.org/jsr/detail/032.jsp
• JAIN SIP Discussion List:

http://archives.java.sun.com/jain-sip-interest.html
• JAIN SIP Collaboration Project:

http://jain-sip.dev.java.net
• SIP-Communicator Collaboration Project:

http://sip-communicator.dev.java.net
• SIP-Presence-Proxy Collaboration Project:

http://jain-sip-presence-proxy.dev.java.net

JSR 32
http://jcp.org/en/jsr/detail?id=32

Subscribe to:
http://archives.java.sun.com/jain-sip-interest.html

